A new study has found that we can detect and attack cancer cells using technology traditionally used by solar power, though studies are still in the initial phase.
Sophia and Richard Lunt, the couple with Michigan State University, found
dramatic improvements in light-activated fluorescent dyes for disease diagnosis, image-guided surgery and site-specific tumour treatment.
“We’ve tested this concept in breast, lung cancer and skin cancer cell lines and mouse models, and so far it’s all looking remarkably promising,” said Sophia, MSU biochemistry and molecular biologist.
While the cancer applications hold the most possibility, their findings have potential beyond the field of oncology, said Richard, the Johansen Crosby Endowed Professor of chemical engineering and materials science.
“This work has the potential to transform fluorescent probes for broad societal impact through applications ranging from biomedicine to photocatalysis — the acceleration of chemical reactions with light,” he said. “Our solar research inspired this cancer project, and in turn, focusing on cancer cells has advanced our solar cell research; it’s been an amazing feedback loop.”
Prior to the Lunts’ combined effort, fluorescent dyes used for therapeutics and diagnostics, aka “theranostics,” had shortcomings, such as low brightness, high toxicity to cells, poor tissue penetration and unwanted side effects.
Future research will work to improve the theranostics’ effectiveness, decrease toxicity and reduce side effects. The Lunts have applied for a patent for their work, and they’re looking forward to eventually pushing their photoactive molecule findings through clinical trials.