Chemists from Massachusetts Institute of Technology have made some advances in preventing virus from being able to enter the cells which could be useful in treating corona infections.
The chemists designed a drug candidate that may block coronaviruses’ ability to enter human cells. The potential drug, which is still early into the development, is a short protein fragment, or peptide, that mimics a protein found on the surface of human cells.
The study has shown the new peptide can bind to the viral protein that coronaviruses use to enter human cells, potentially disarming it.
“We have a lead compound that we really want to explore, because it does, in fact, interact with a viral protein in the way that we predicted it to interact, so it has a chance of inhibiting viral entry into a host cell,” says Brad Pentelute, an MIT associate professor of chemistry, who is leading the research team.
The research team has sent samples of the peptide to collaborators who plan to carry out tests in human cells. Coronaviruses, including SARS-CoV-2, which is causing the current COVID-19 outbreak, have many protein spikes protruding from their viral envelope.
Studies of SARS-CoV-2 have also shown that a specific region of the spike protein, known as the receptor binding domain, binds to a receptor called angiotensin-converting enzyme 2 (ACE2).
“We’ve built these platforms for really rapid turnaround, so I think that’s why we’re at this point right now,” Pentelute says. “It’s because we have these tools we’ve built up at MIT over the years.”
Although MIT has been scaling back on-campus research since mid-March, Pentelute’s lab was granted special permission allowing a small group of researchers to continue to work on this project. They are now developing about 100 different variants of the peptide in hopes of increasing its binding strength and making it more stable in the body.